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Context

In various domains, graphs represent a useful representation for many types of
data. Prominent examples entail behavioural analyses performed in cybersecurity or
social network analysis. In the former, user internet behaviour can be observed by
monitoring DNS requests, interpreted as successive steps of a random walker on a
graph in which nodes represent domain names and edges represent population-level
average behaviour. Therefore studying user behaviour can be done by analyzing the
subgraph induced by specific user movements. In the latter, graph representations
naturally emerge from user interactions. For example nodes can represent users, and
any relation between two users (messages or common interests) can be interpreted as
edges. Understanding and analyzing graph structures appear to be a key tool in many
real-world applications. It is thus essential to find efficient and robust methods for
tasks such as node or graph classification.

In the last decade, deep neural networks have reached an outstanding level of
accuracy in numerous areas, such as image classification [KSH12] or object detec-
tion [RHGS15]. These models have also recently been formulated in the context of
graph-structured data, and now play an important role in node classification and
graph classification problems [SGT™09, DDS16, KW16, HYL17, WPC*19]. Such for-
mulations are currently explored in many domains, jointly exploiting classical fea-
tures, as well as graph-structured information. Successful applications have been
developed in physics, in which graph neural networks are able to predict physical
properties of molecules based on their molecular graphs [CBG™17]. Graph neural net-
works also have convincing applications in material sciences [XG18], structural fore-



casting [LYSL17], natural language processing [MT17], or communication optimiza-
tion in multi-agent systems [SSF16].

Despite these powerful representation properties, recent issues have been demon-
strated in deep learning-based approaches regarding their robustness to adversarial
attacks (small perturbations of the input) and the resulting training data privacy (due
to overfitting and over-parameterization posing threats on data privacy). Adversarial
attacks [SZS™13] are small perturbations of an input that fools the results of classifica-
tion for a network. Adversarial attacks raise questions of security and safety, and also
responsibility in terms of law. Adversarial examples attacks against machine learning
models have become a burning issue due to their efficiency, and the number of sensi-
tive domains they could affect. Accordingly, both attacks and defenses are developed
in a tight back-and-forth [GSS14, PM] 16, PMG™17, DLT"18, [SKC18]. Recently, the
idea of using randomization in the learning process to ensure robustness against ad-
versarial examples attacks have been successfully used [XWZ"17, MDST18|, LCZH17,
PMAT19]. In the context of graph neural networks, these issues are of primary im-
portance for various reasons: first graph-structured data often bear much more infor-
mation than classical tabular data. For example in social networks, tabular based ap-
proaches classicaly summarize neighbourhood information in a few variables (num-
ber of friends/degree, node/edge betweenness, ...), while the topological information
structurally bear much more sensitive information about individuals. Second the com-
plexity of information present in graphs makes the graph neural network approaches
much more sensitive to attacks. Basically this comes from the fact that small pertur-
bations in graph data consist in adding/deleting nodes, or modifying edges weight.
While adversarial modifications in images and sounds might be globally noticeable,
graph-based perturbations will be hard to detect. Coincidentally with the fact that
graph neural network approaches have shown superior results in various domains,
their robustness have been investigated and attacks have been developed in the con-
text of node classification and graph classification [ZAG18, DLT"18, SWYL18§].

In this context it is of primary importance to develop innovative approaches to en-
sure privacy and robustness of graph neural networks. Among possible approaches,
lightweight approaches such as randomization will have to be adapted to these tech-
niques. Depending on the criticity of the stage and needed privacy of data and models
(learning or inference phases), randomization techniques should be complemented by
homomorphic encryption approaches. With respect to privacy, a number of works
have started to investigate how techniques for computing over encrypted data such as
homomorphic cryptography (FHE) can be applied to the inference phase of deep neu-
ral network models with encouraging results when a clear-domain network is eval-
uated over an encrypted-domain input [BMMP18| (CLM ™19, CdAWM™17, DGBL"16].
Yet there are a number of practically interesting extensions most notably with respect
to GNN regarding specific optimizations that may render them more amenable to bet-
ter FHE-execution performances. Also investigating the relevance and practicality of
using these techniques during the learning phase of such models is of high practical
interest. On top of privacy, the connection between cryptographic theory and tech-
niques and counter-measures against the aforementioned adversarial attacks is an an-
other important research topic which can be considered as part of this PhD subject.
The goal of this thesis is to explore robustness and privacy of graph-neural network-
based approaches, by considering solutions combining randomization and homomor-



phic encryption to ensure a satisfying compromise between performance, robustness
and data privacy.

CEA background in these fields

CEA LIST has been a key leader in fully homomorphic encryption techniques ht tps :
//github.com/CEA-LIST/Cingulata. In the context of FHE, machine learning
applications appear as a killer application. Many key advances have yet to be con-
sidered to fully address machine learning applications using FHE technologies. Next
technological barriers depend on the computational cost of the considered stage (train-
ing or inference) but the main approaches are: first to limit operators used in graph
neural networks such that FHE associated computational cost is kept reasonable. Sec-
ond FHE can be viewed as a building block, which could be activated in specific parts
of the pipeline to ensure model or data privacy.

CEA LIST is also very active in the field of randomization algorithms to ensure data
privacy and robustness to adversarial attacks. Past works include PhD thesis of Anne
Morvan and Rafael Pinot.

Expected work

e Experimental study of state-of-the-art attacks.
e Theoretical approach of defenses.

e Corresponding implementation, and experimentation of defenses.

Required profile

e You are currently in the final year of engineering school or in M2 at the university
with specialization in computer science and/or statistics.

¢ You have a strong background in applied mathematics/computer science (prob-
ability, statistics, graph theory).

e You have good programming skills (Python/R, torch/tensorflow, C++).

e Academic research interests you, but also applications to concrete problems.

Conditions

The doctoral will take place at CEA LIST in Saclay, where you will work with Renaud
Sirdey and Cédric Gouy-Pailler. Access to the CEA is based on a daily bus network
service covering the entire Paris region (several buses from Paris in particular).
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